A paper describing the findings, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," was published November 1 in the journal Nature Communications.
"The solar spectrum is not like a laser -- it's very broadband, starting with UV and going up to near-infrared," said Koray Aydin, assistant professor of electrical engineering and computer science and the paper's lead author. "To capture this light most efficiently, a solar cell needs to have a broadband response. This design allows us to achieve that."
The researchers used two unconventional materials -- metal and silicon oxide -- to create thin but complex, trapezoid-shaped metal gratings on the nanoscale that can trap a wider range of visible light. The use of these materials is unusual because on their own, they do not absorb light; however, they worked together on the nanoscale to achieve very high absorption rates, Aydin said.
The uniquely shaped grating captured a wide range of wavelengths due to the local optical resonances, causing light to spend more time inside the material until it gets absorbed. This composite metamaterial was also able to collect light from many different angles -- a useful quality when dealing with sunlight, which hits solar cells at different angles as sun moves from east to west throughout the day.
This research is not directly applicable to solar cell technology because metal and silicon oxide cannot convert light to electricity; in fact, the photons are converted to heat and might allow novel ways to control the heat flow at the nanoscale. However, the innovative trapezoid shape could be replicated in semiconducting materials that could be used in solar cells, Aydin said.
If applied to semiconducting materials, the technology could lead to thinner, lower-cost, and more efficient solar cells, he said.
Recommend this story on Facebook, Twitter,
and Google +1:
Other bookmarking and sharing tools:
Story Source:
The above story is reprinted from materials provided by Northwestern University. The original article was written by Sarah Ostman.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.
Journal Reference:
Koray Aydin, Vivian E. Ferry, Ryan M. Briggs, Harry A. Atwater. Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nature Communications, 2011; 2: 517 DOI: 10.1038/ncomms1528Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
No comments:
Post a Comment