This creates new materials which can be superconductive, magnetic, or behave like topological insulators.
Earlier this year, Dr. Jun Sung Kim came from South Korea to use HZDR's Dresden High Magnetic Field Laboratory to analyze a number of material samples in high magnetic fields. For the first time ever, he and his colleague from Dresden, Dr. Frederik Wolff-Fabris, studied the metal SrMnBi2 and observed something amazing: The material consisting of the three elements strontium, manganese, and bismuth behaves physically similar to the "magical material" graphene.
Due to its composition and the position of its elements in the Periodic Table, SrMnBi2 permits simple and uncomplicated doping with foreign atoms. Inserting small amounts of foreign atoms alters the physical properties of a material. This might result in the creation of new magnets or superconductors.
SrMnBi2 is currently also in the focus of other research groups; but only the use of ultra-high magnetic fields, such as those generated in the Dresden High Magnetic Field Laboratory, permitted these precise results and, thus, a publication in the scientific journal Physical Review Letters. Later this year, Dr. Jun Sung Kim will return to Dresden to conduct additional experiments on SrMnBi2 with Dr. Wolff-Fabris.
Recommend this story on Facebook, Twitter,
and Google +1:
Other bookmarking and sharing tools:
Story Source:
The above story is reprinted (with editorial adaptations by ScienceDaily staff) from materials provided by Helmholtz Association of German Research Centres.
Journal Reference:
Joonbum Park, G. Lee, F. Wolff-Fabris, Y. Koh, M. Eom, Y. Kim, M. Farhan, Y. Jo, C. Kim, J. Shim, J. Kim. Anisotropic Dirac Fermions in a Bi Square Net of SrMnBi2. Physical Review Letters, 2011; 107 (12) DOI: 10.1103/PhysRevLett.107.126402Note: If no author is given, the source is cited instead.
Disclaimer: Views expressed in this article do not necessarily reflect those of ScienceDaily or its staff.
No comments:
Post a Comment