Friday, 24 February 2012

Astronomers Solve Mystery of Vanishing Electrons in Earth's Outer Radiation Belt

UCLA researchers have explained the puzzling disappearing act of energetic electrons in Earth's outer radiation belt, using data collected from a fleet of orbiting spacecraft. (Credit: NASA Goddard Space Flight Center / Image by Reto Stöckli /Enhancements by Robert Simmon)



UCLA researchers have explained the puzzling disappearing act of energetic electrons in Earth's outer radiation belt, using data collected from a fleet of orbiting spacecraft.

In a paper published Jan. 29 in the advance online edition of the journalNature Physics, the team shows that the missing electrons are swept away from the planet by a tide of solar wind particles during periods of heightened solar activity.
"This is an important milestone in understanding Earth's space environment," said lead study author Drew Turner, an assistant researcher in the UCLA Department of Earth and Space Sciences and a member of UCLA's Institute for Geophysics and Planetary Physics (IGPP). "We are one step closer towards understanding and predicting space weather phenomena."
During powerful solar events such as coronal mass ejections, parts of the magnetized outer layers of sun's atmosphere crash onto Earth's magnetic field, triggering geomagnetic storms capable of damaging the electronics of orbiting spacecraft. These cosmic squalls have a peculiar effect on Earth's outer radiation belt, a doughnut-shaped region of space filled with electrons so energetic that they move at nearly the speed of light.
"During the onset of a geomagnetic storm, nearly all the electrons trapped within the radiation belt vanish, only to come back with a vengeance a few hours later," said Vassilis Angelopoulos, a UCLA professor of Earth and space sciences and IGPP researcher.
The missing electrons surprised scientists when the trend was first measured in the 1960s by instruments onboard the earliest spacecraft sent into orbit, said study co-author Yuri Shprits, a research geophysicist with the IGPP and the departments of Earth and space sciences, and atmospheric and oceanic sciences.
"It's a puzzling effect," he said. "Oceans on Earth do not suddenly lose most of their water, yet radiation belts filled with electrons can be rapidly depopulated."
Even stranger, the electrons go missing during the peak of a geomagnetic storm, a time when one might expect the radiation belt to be filled with energetic particles because of the extreme bombardment by the solar wind.
Where do the electrons go? This question has remained unresolved since the early 1960s. Some believed the electrons were lost to Earth's atmosphere, while others hypothesized that the electrons were not permanently lost at all but merely temporarily drained of energy so that they appeared absent.
"Our study in 2006 suggested that electrons may be, in fact, lost to the interplanetary medium and decelerated by moving outwards," Shprits said. "However, until recently, there was no definitive proof for this theory."
To resolve the mystery, Turner and his team used data from three networks of orbiting spacecraft positioned at different distances from Earth to catch the escaping electrons in the act. The data show that while a small amount of the missing energetic electrons did fall into the atmosphere, the vast majority were pushed away from the planet, stripped away from the radiation belt by the onslaught of solar wind particles during the heightened solar activity that generated the magnetic storm itself.
A greater understanding of Earth's radiation belts is vital for protecting the satellites we rely on for global positioning, communications and weather monitoring, Turner said. Earth's outer radiation belt is a harsh radiation environment for spacecraft and astronauts; the high-energy electrons can penetrate a spacecraft's shielding and wreak havoc on its delicate electronics. Geomagnetic storms triggered when the oncoming particles smash into Earth's magnetosphere can cause partial or total spacecraft failure.
"While most satellites are designed with some level of radiation protection in mind, spacecraft engineers must rely on approximations and statistics because they lack the data needed to model and predict the behavior of high-energy electrons in the outer radiation belt," Turner said.
During the 2003 "Halloween Storm," more than 30 satellites reported malfunctions, and one was a total loss, said Angelopoulos, a co-author of the current research. As the solar maximum approaches in 2013, marking the sun's peak activity over a roughly 11-year cycle, geomagnetic storms may occur as often as several times per month.
"High-energy electrons can cut down the lifetime of a spacecraft significantly," Turner said. "Satellites that spend a prolonged period within the active radiation belt might stop functioning years early."
While a mechanized spacecraft might include multiple redundant circuits to reduce the risk of total failure during a solar event, human explorers in orbit do not have the same luxury. High-energy electrons can punch through astronauts' spacesuits and pose serious health risks, Turner said.
"As a society, we've become incredibly dependent on space-based technology," he said. "Understanding this population of energetic electrons and their extreme variations will help create more accurate models to predict the effect of geomagnetic storms on the radiation belts."
Key observational data used in this study was collected by a network of NASA spacecraft known as THEMIS (Time History of Events and Macroscale Interactions during Substorms); Angelopoulos is the principal investigator of the THEMIS mission. Additional information was obtained from two groups of weather satellites called POES (Polar Operational Environmental Satellite) and GOES (Geostationary Operational Environmental Satellite).
A new collaboration between UCLA and Russia's Moscow State University promises to paint an even clearer picture of these vanishing electrons. Slated for launch in the spring of 2012, the Lomonosov spacecraft will fly in low Earth orbit to measure highly energetic particles with unprecedented accuracy, said Shprits, the principal investigator of the project. Several key instruments for the mission are being developed and assembled at UCLA.
Earth's radiation belts were discovered in 1958 by Explorer I, the first U.S. satellite that traveled to space.
"What we are studying was the first discovery of the space age," Shprits said. "People realized that launches of spacecraft didn't only make the news, they could also make scientific discoveries that were completely unexpected."
This project received federal funding from NASA and the National Science Foundation. Other co-authors include Michael Hartinger, a UCLA graduate student in Earth and space sciences.
Story Source:
The above story is reprinted from materials provided by University of California - Los Angeles. The original article was written by Kim DeRose.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. Drew L. Turner, Yuri Shprits, Michael Hartinger, Vassilis Angelopoulos. Explaining sudden losses of outer radiation belt electrons during geomagnetic storms.Nature Physics, 2012; DOI: 10.1038/nphys2185


Thursday, 23 February 2012

Kitchen Gadget Inspires Scientist to Make More Effective Plastic Electronics

Fabricating single crystal organic field-effect transistors using ultra-thin polymer membrane for a gate insulator. In the upper row, the membrane is stretched over the transistor before vacuum is applied. In the lower row, the vacuum has been applied and the membrant is adhering to the organic crystal. Photos on the right are close-up views of the transistor, with the organic semiconductor crystal in red. (Credit: Credit: H. T. Yi, et. al.)



One day in 2010, Rutgers physicist Vitaly Podzorov watched a store employee showcase a kitchen gadget that vacuum-seals food in plastic. The demo stuck with him. The simple concept -- an airtight seal around pieces of food -- just might apply to his research: developing flexible electronics using lightweight organic semiconductors for products such as video displays or solar cells.

"Organic transistors, which switch or amplify electronic signals, hold promise for making video displays that bend like book pages or roll and unroll like posters," said Podzorov. But traditional methods of fabricating a part of the transistor known as the gate insulator often end up damaging the transistor's delicate semiconductor crystals.
Drawing inspiration from the food-storage gadget, Podzorov and his colleagues tried an experiment. They suspended a thin polymer membrane above the organic crystal and created a vacuum underneath, causing the membrane to collapse gently and evenly onto the crystal's surface. The result: a smooth, defect-free interface between the organic semiconductor and the gate insulator.
The researchers reported their success in the journal Advanced Materials. In the article,Podzorov and three colleagues describe how a single-crystal organic field effect transistor (OFET) made with this thin polymer gate insulator boosted electrical performance. The researchers further reported that they could remove and reapply membranes to the same crystal several times without degrading its surface.
Organic transistors electrically resemble silicon transistors in computer chips, but they are made of flexible carbon-based molecules that can be printed on sheets of plastic. Silicon transistors are made in rigid, brittle wafers of silicon.
The methods that scientists previously applied to organic transistor fabrication were based on silicon semiconductor processing, explained Podzorov, assistant professor in the Department of Physics and Astronomy, School of Arts and Sciences. These involved high temperatures, high-energy plasmas or chemical reactions, all of which could damage the delicate organic crystal surface and hinder the transistor's performance.
"People have tendencies to go with something they've known for a long time," he said. "In this case, it doesn't work right."
Podzorov's innovation builds upon a decade of Rutgers research in this field, including his invention of the first single crystal organic transistor in 2003. While his latest innovation is still a ways from commercial reality, he sees an immediate application in the classroom.
"Our technique takes 10 minutes," he said. "It should be exciting for students to actually build these devices and immediately see them work, all within one lab session."
Podzorov was actually trying to solve another problem when he first recalled the food packaging demo. He was thinking about how to protect organic crystals from airborne impurities when his lab shipped samples to collaborating scientists in California and overseas.
"We could place our samples between plastic sheets and pull a vacuum," he said. "Then I thought, 'why don't we try doing this for our gate insulator?'"
Funding for the research was provided by the U. S. Department of Energy and the Rutgers Institute for Advanced Materials and Devices for Nanotechnology. Collaborators in Podzorov's lab were postdoctoral researchers Hee Taek Yi and Yuanzhen Chen, and undergraduate student Krzysztof Czelen. The department's machine shop made a custom-designed vacuum chamber for the project

Story Source:
The above story is reprinted from materials provided byRutgers University.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. H. T. Yi, Y. Chen, K. Czelen, V. Podzorov. Vacuum Lamination Approach to Fabrication of High-Performance Single-Crystal Organic Field-Effect TransistorsAdvanced Materials, 2011; 23 (48): 5807 DOI:10.1002/adma.201103305

Wednesday, 22 February 2012

Microbubbles Provide New Boost for Biofuel Production


A solution to the difficult issue of harvesting algae for use as a biofuel has been developed using microbubble technology pioneered at the University of Sheffield. The technique builds on previous research in which microbubbles were used to improve the way algae is cultivated.

Algae produce an oil which can be processed to create a useful biofuel. Biofuels, made from plant material, are considered an important alternative to fossil fuels and algae, in particular, has the potential to be a very efficient biofuel producer. Until now, however, there has been no cost-effective crmethod of harvesting and removing the water from the algae for it to be processed effectively.
Now, a team led by Professor Will Zimmerman in the Department of Chemical and Biological Engineering at the University of Sheffield, believe they have solved the problem. They have developed an inexpensive way of producing microbubbles that can float algae particles to the surface of the water, making harvesting easier, and saving biofuel-producing companies time and money.
The research is set to be published in Biotechnology and Bioengineering on 26 January 2012.
Professor Zimmerman and his team won the Moulton Medal, from the Institute of Chemical Engineers, for their earlier work which used the microbubble technology to improve algae production methods, allowing producers to grow crops more rapidly and more densely.
"We thought we had solved the major barrier to biofuel companies processing algae to use as fuel when we used microbubbles to grow the algae more densely," explains Professor Zimmerman.
"It turned out, however, that algae biofuels still couldn´t be produced economically, because of the difficulty in harvesting and dewatering the algae. We had to develop a solution to this problem and once again, microbubbles provided a solution."
Microbubbles have been used for flotation before: water purification companies use the process to float out impurities, but it hasn´t been done in this context, partly because previous methods have been very expensive.
The system developed by Professor Zimmerman´s team uses up to 1000 times less energy to produce the microbubbles and, in addition, the cost of installing the Sheffield microbubble system is predicted to be much less than existing flotation systems.
The next step in the project is to develop a pilot plant to test the system at an industrial scale. Professor Zimmerman is already working with Tata Steel at their site in Scunthorpe using CO2 from their flue-gas stacks and plans to continue this partnership to test the new system.
Dr. Bruce Adderley, Manager Climate Change Breakthrough Technology, said, "Professor Zimmerman´s microbubble-based technologies are exactly the kind of step-change innovations that we are seeking as a means to address our emissions in the longer term, and we are delighted to have the opportunity to extend our relationship with Will and his team in the next phase of this pioneering research."
The research was supported by the University of Sheffield´s Knowledge Transfer Account, funded by the Engineering and Physical Sciences Research Council. It was also supported by the Royal Society Innovation Award 2010, and the Concept Fund of Yorkshire Forward
Story Source:
The above story is reprinted from materials provided by University of Sheffield.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. James Hanotu, HC Hemaka Bandulasena, William B Zimmerman. Microflotation performance for algal separationBiotechnology and Bioengineering, 2012; DOI:10.1002/bit.24449

Tuesday, 21 February 2012

Graphene Supermaterial Goes Superpermeable: Can Be Used to Distill Alcohol

Dr Nair with the membrane. (Credit: Image courtesy of Manchester University)



Wonder material graphene has revealed another of its extraordinary properties -- University of Manchester researchers have found that it is superpermeable with respect to water.

Graphene is one of the wonders of the science world, with the potential to create foldaway mobile phones, wallpaper-thin lighting panels and the next generation of aircraft. The new finding at the University of Manchester gives graphene's potential a most surprising dimension -- graphene can also be used for distilling alcohol.
In a report published in Science, a team led by Professor Sir Andre Geim shows that graphene-based membranes are impermeable to all gases and liquids (vacuum-tight). However, water evaporates through them as quickly as if the membranes were not there at all.
This newly-found property can now be added to the already long list of superlatives describing graphene. It is the thinnest known material in the universe and the strongest ever measured. It conducts electricity and heat better than any other material. It is the stiffest one too and, at the same time, it is the most ductile. Demonstrating its remarkable properties won University of Manchester academics the Nobel Prize in Physics in 2010.
Now the University of Manchester scientists have studied membranes from a chemical derivative of graphene called graphene oxide. Graphene oxide is the same graphene sheet but it is randomly covered with other molecules such as hydroxyl groups OH-. Graphene oxide sheets stack on top of each other and form a laminate.
The researchers prepared such laminates that were hundreds times thinner than a human hair but remained strong, flexible and were easy to handle.
When a metal container was sealed with such a film, even the most sensitive equipment was unable to detect air or any other gas, including helium, to leak through.
It came as a complete surprise that, when the researchers tried the same with ordinary water, they found that it evaporates without noticing the graphene seal. Water molecules diffused through the graphene-oxide membranes with such a great speed that the evaporation rate was the same independently whether the container was sealed or completely open.
Dr Rahul Nair, who was leading the experimental work, offers the following explanation: "Graphene oxide sheets arrange in such a way that between them there is room for exactly one layer of water molecules. They arrange themselves in one molecule thick sheets of ice which slide along the graphene surface with practically no friction.
"If another atom or molecule tries the same trick, it finds that graphene capillaries either shrink in low humidity or get clogged with water molecules."
"Helium gas is hard to stop. It slowly leaks even through a millimetre -thick window glass but our ultra-thin films completely block it. At the same time, water evaporates through them unimpeded. Materials cannot behave any stranger," comments Professor Geim. "You cannot help wondering what else graphene has in store for us."
"This unique property can be used in situations where one needs to remove water from a mixture or a container, while keeping in all the other ingredients," says Dr Irina Grigorieva who also participated in the research.
"Just for a laugh, we sealed a bottle of vodka with our membranes and found that the distilled solution became stronger and stronger with time. Neither of us drinks vodka but it was great fun to do the experiment," adds Dr Nair.
The Manchester researchers report this experiment in theirScience paper, too, but they say they do not envisage use of graphene in distilleries, nor offer any immediate ideas for applications.
However, Professor Geim adds 'The properties are so unusual that it is hard to imagine that they cannot find some use in the design of filtration, separation or barrier membranes and for selective removal of water'.
Story Source:
The above story is reprinted from materials provided byManchester University, via AlphaGalileo.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, A. K. Geim. Unimpeded Permeation of Water Through Helium-Leak-Tight Graphene-Based Membranes.Science, 2012; 335 (6067): 442 DOI:10.1126/science.1211694


Monday, 20 February 2012

How Seawater Could Corrode Nuclear Fuel


Japan used seawater to cool nuclear fuel at the stricken Fukushima-Daiichi nuclear plant after the tsunami in March 2011 -- and that was probably the best action to take at the time, says Professor Alexandra Navrotsky of the University of California, Davis.


But Navrotsky and others have since discovered a new way in which seawater can corrode nuclear fuel, forming uranium compounds that could potentially travel long distances, either in solution or as very small particles. The research team published its work Jan. 23 in the
 Proceedings of the National Academy of Sciences.
"This is a phenomenon that has not been considered before," said Alexandra Navrotsky, distinguished professor of ceramic, earth and environmental materials chemistry. "We don't know how much this will increase the rate of corrosion, but it is something that will have to be considered in future."
Japan used seawater to avoid a much more serious accident at the Fukushima-Daiichi plant, and Navrotsky said, to her knowledge, there is no evidence of long-distance uranium contamination from the plant.
Uranium in nuclear fuel rods is in a chemical form that is "pretty insoluble" in water, Navrotsky said, unless the uranium is oxidized to uranium-VI -- a process that can be facilitated when radiation converts water into peroxide, a powerful oxidizing agent.
Peter Burns, professor of civil engineering and geological sciences at the University of Notre Dame and a co-author of the new paper, had previously made spherical uranium peroxide clusters, rather like carbon "buckyballs," that can dissolve or exist as solids.
In the new paper, the researchers show that in the presence of alkali metal ions such as sodium -- for example, in seawater -- these clusters are stable enough to persist in solution or as small particles even when the oxidizing agent is removed.
In other words, these clusters could form on the surface of a fuel rod exposed to seawater and then be transported away, surviving in the environment for months or years before reverting to more common forms of uranium, without peroxide, and settling to the bottom of the ocean. There is no data yet on how fast these uranium peroxide clusters will break down in the environment, Navrotsky said.
Navrotsky and Burns worked with the following co-authors: postdoctoral researcher Christopher Armstrong and project scientist Tatiana Shvareva, UC Davis; May Nyman, Sandia National Laboratory, Albuquerque, N.M.; and Ginger Sigmon, University of Notre Dame. The U.S. Department of Energy supported the project.
Story Source:
The above story is reprinted from materials provided byUniversity of California - Davis.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. C. R. Armstrong, M. Nyman, T. Shvareva, G. E. Sigmon, P. C. Burns, A. Navrotsky. Uranyl peroxide enhanced nuclear fuel corrosion in seawaterProceedings of the National Academy of Sciences, 2012; DOI:10.1073/pnas.1119758109

Sunday, 19 February 2012

Rap Music Powers Rhythmic Action of Medical Sensor

This graphic illustrates the principles behind the operation of a new type of miniature medical sensor powered by acoustic waves, including those found in music such as rap, blues, jazz and rock. The device, a pressure sensor, might ultimately help to treat people stricken with aneurisms or incontinence due to paralysis. (Credit: Birck Nanotechnology Center, Purdue University)



The driving bass rhythm of rap music can be harnessed to power a new type of miniature medical sensor designed to be implanted in the body.

Acoustic waves from music, particularly rap, were found to effectively recharge the pressure sensor. Such a device might ultimately help to treat people stricken with aneurysms or incontinence due to paralysis.
The heart of the sensor is a vibrating cantilever, a thin beam attached at one end like a miniature diving board. Music within a certain range of frequencies, from 200-500 hertz, causes the cantilever to vibrate, generating electricity and storing a charge in a capacitor, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.
"The music reaches the correct frequency only at certain times, for example, when there is a strong bass component," he said. "The acoustic energy from the music can pass through body tissue, causing the cantilever to vibrate."
When the frequency falls outside of the proper range, the cantilever stops vibrating, automatically sending the electrical charge to the sensor, which takes a pressure reading and transmits data as radio signals. Because the frequency is continually changing according to the rhythm of a musical composition, the sensor can be induced to repeatedly alternate intervals of storing charge and transmitting data.
"You would only need to do this for a couple of minutes every hour or so to monitor either blood pressure or pressure of urine in the bladder," Ziaie said. "It doesn't take long to do the measurement."
Findings are detailed in a paper to be presented during the IEEE MEMS conference, which will be Jan. 29 to Feb. 2 in Paris. The paper was written by doctoral student Albert Kim, research scientist Teimour Maleki and Ziaie.
"This paper demonstrates the feasibility of the concept," he said.
The device is an example of a microelectromechanical system, or MEMS, and was created in the Birck Nanotechnology Center at the university's Discovery Park. The cantilever beam is made from a ceramic material called lead zirconate titanate, or PZT, which is piezoelectric, meaning it generates electricity when compressed. The sensor is about 2 centimeters long. Researchers tested the device in a water-filled balloon.
A receiver that picks up the data from the sensor could be placed several inches from the patient. Playing tones within a certain frequency range also can be used instead of music.
"But a plain tone is a very annoying sound," Ziaie said. "We thought it would be novel and also more aesthetically pleasing to use music."
Researchers experimented with four types of music: rap, blues, jazz and rock.
"Rap is the best because it contains a lot of low frequency sound, notably the bass," Ziaie said.
The sensor is capable of monitoring pressure in the urinary bladder and in the sack of a blood vessel damaged by an aneurism. Such a technology could be used in a system for treating incontinence in people with paralysis by checking bladder pressure and stimulating the spinal cord to close the sphincter that controls urine flow from the bladder. More immediately, it could be used to diagnose incontinence. The conventional diagnostic method now is to insert a probe with a catheter, which must be in place for several hours while the patient remains at the hospital.
"A wireless implantable device could be inserted and left in place, allowing the patient to go home while the pressure is monitored," Ziaie said.
The new technology offers potential benefits over conventional implantable devices, which either use batteries or receive power through a property called inductance, which uses coils on the device and an external transmitter. Both approaches have downsides. Batteries have to be replaced periodically, and data are difficult to retrieve from devices that use inductance; coils on the implanted device and an external receiver must be lined up precisely, and they can only be about a centimeter apart.
A patent application has been filed for the design.
Story Source:
The above story is reprinted from materials provided by Purdue University. The original article was written by Emil Venere.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Friday, 17 February 2012

NASA's Kepler Announces 11 New Planetary Systems Hosting 26 Planets

This artist's concept shows an overhead view of the orbital position of the planets in systems with multiple transiting planets discovered by NASA's Kepler mission. All the colored planets have been verified. More vivid colors indicate planets that have been confirmed by their gravitational interactions with each other or the star. Several of these systems contain additional planet candidates (shown in grey) that have not yet been verified. (Credit: NASA Ames/UC Santa Cruz)



NASA's Kepler mission has discovered 11 new planetary systems hosting 26 confirmed planets. These discoveries nearly double the number of verified Kepler planets and triple the number of stars known to have more than one planet that transits, or passes in front of, the star. Such systems will help astronomers better understand how planets form.

The planets orbit close to their host stars and range in size from 1.5 times the radius of Earth to larger than Jupiter. Fifteen are between Earth and Neptune in size. Further observations will be required to determine which are rocky like Earth and which have thick gaseous atmospheres like Neptune. The planets orbit their host star once every six to 143 days. All are closer to their host star than Venus is to our sun.
"Prior to the Kepler mission, we knew of perhaps 500 exoplanets across the whole sky," said Doug Hudgins, Kepler program scientist at NASA Headquarters in Washington. "Now, in just two years staring at a patch of sky not much bigger than your fist, Kepler has discovered more than 60 planets and more than 2,300 planet candidates. This tells us that our galaxy is positively loaded with planets of all sizes and orbits."
Kepler identifies planet candidates by repeatedly measuring the change in brightness of more than 150,000 stars to detect when a planet passes in front of the star. That passage casts a small shadow toward Earth and the Kepler spacecraft.
"Confirming that the small decrease in the star's brightness is due to a planet requires additional observations and time-consuming analysis," said Eric Ford, associate professor of astronomy at the University of Florida and lead author of the paper confirming Kepler-23 and Kepler-24. "We verified these planets using new techniques that dramatically accelerated their discovery."
Each of the newly confirmed planetary systems contains two to five closely spaced transiting planets. In tightly packed planetary systems, the gravitational pull of the planets on each other causes some planets to accelerate and some to decelerate along their orbits. The acceleration causes the orbital period of each planet to change. Kepler detects this effect by measuring the changes, or so-called Transit Timing Variations.
Planetary systems with Transit Timing Variations can be verified without requiring extensive ground-based observations, accelerating confirmation of planet candidates. This detection technique also increases Kepler's ability to confirm planetary systems around fainter and more distant stars.
"By precisely timing when each planet transits its star, Kepler detected the gravitational tug of the planets on each other, clinching the case for 10 of the newly announced planetary systems," said Dan Fabrycky, Hubble Fellow at the University of California, Santa Cruz, and lead author for a paper confirming Kepler-29, 30, 31 and 32.
Five of the systems (Kepler-25, Kepler-27, Kepler-30, Kepler-31 and Kepler-33) contain a pair of planets where the inner planet orbits the star twice during each orbit of the outer planet. Four of the systems (Kepler-23, Kepler-24, Kepler-28 and Kepler-32) contain a pairing where the outer planet circles the star twice for every three times the inner planet orbits its star.
"These configurations help to amplify the gravitational interactions between the planets, similar to how my sons kick their legs on a swing at the right time to go higher," said Jason Steffen, the Brinson postdoctoral fellow at Fermilab Center for Particle Astrophysics in Batavia, Ill., and lead author of a paper confirming Kepler-25, 26, 27 and 28.
Kepler-33, a star that is older and more massive than our sun, had the most planets. The system hosts five planets, ranging in size from 1.5 to 5 times that of Earth. All of the planets are located closer to their star than any planet is to our sun.
The properties of a star provide clues for planet detection. The decrease in the star's brightness and duration of a planet transit combined with the properties of its host star present a recognizable signature. When astronomers detect planet candidates that exhibit similar signatures around the same star, the likelihood of any of these planet candidates being a false positive is very low.
"The approach used to verify the Kepler-33 planets shows the overall reliability is quite high," said Jack Lissauer, planetary scientist at NASA Ames Research Center at Moffett Field, Calif., and lead author of the paper on Kepler-33. "This is a validation by multiplicity."
These discoveries are published in four different papers in the Astrophysical Journal and the Monthly Notices of the Royal Astronomical Society.
Ames Research Center in Moffett Field, Calif., manages Kepler's ground system development, mission operations and science data analysis. NASA's Jet Propulsion Laboratory, Pasadena, Calif., managed the Kepler mission's development.
Ball Aerospace and Technologies Corp. in Boulder, Colo., developed the Kepler flight system and supports mission operations with the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.
The Space Telescope Science Institute in Baltimore archives, hosts and distributes Kepler science data. Kepler is NASA's 10th Discovery Mission and is funded by NASA's Science Mission Directorate at the agency's headquarters in Washington.
For more information about the Kepler mission and to view the digital press kit, visit http://www.nasa.gov/kepler . More information about exoplanets and NASA's planet-finding program is at http://planetquest.jpl.nasa.gov 

Story Source:
The above story is reprinted from materials provided byNASA/Jet Propulsion Laboratory.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Saturday, 11 February 2012

Scorpions Inspire Scientists in Making Tougher Surfaces for Machinery

Yellow fattail scorpion (Androctonus australis). 
(Credit: © Fyle / Fotolia)



Taking inspiration from the yellow fattail scorpion, which uses a bionic shield to protect itself against scratches from desert sandstorms, scientists have developed a new way to protect the moving parts of machinery from wear and tear.

A report on the research appears in ACS' journal Langmuir.
Zhiwu Han, Junqiu Zhang, Wen Li and colleagues explain that "solid particle erosion" is one of the important reasons for material damage or equipment failure. It causes millions of dollars of damage each year to helicopter rotors, rocket motor nozzles, turbine blades, pipes and other mechanical parts. The damage occurs when particles of dirt, grit and other hard material in the air, water or other fluids strike the surfaces of those parts. Filters can help remove the particles but must be replaced or cleaned, while harder, erosion-resistant materials cost more to develop and make. In an effort to develop better erosion-resistant surfaces, Han and Li's group sought the secrets of the yellow fattail scorpion for the first time. The scorpion evolved to survive the abrasive power of harsh sandstorms.
They studied the bumps and grooves on the scorpions' backs, scanning the creatures with a 3-D laser device and developing a computer program that modeled the flow of sand-laden air over the scorpions. The team used the model in computer simulations to develop actual patterned surfaces to test which patterns perform best. At the same time, the erosion tests were conducted in the simple erosion wind tunnel for groove surface bionic samples at various impact conditions. Their results showed that a series of small grooves at a 30-degree angle to the flowing gas or liquid give steel surfaces the best protection from erosion.
Story Source:
The above story is reprinted from materials provided byAmerican Chemical Society.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. Han Zhiwu, Zhang Junqiu, Ge Chao, Wen Li, Luquan Ren.Erosion Resistance of Bionic Functional Surfaces Inspired from Desert ScorpionsLangmuir, 2012; 120120101148000 DOI: 10.1021/la203942r

Friday, 10 February 2012

World's Most Powerful X-Ray Laser Creates 2-Million-Degree Matter

This photograph shows the interior of a Linac Coherent Light Source SXR experimental chamber, set up for an investigation to create and measure a form of extreme, 2-million-degree matter known as “hot, dense matter.” The central part of the frame contains the holder for the material that will be converted by the powerful LCLS laser into hot, dense matter. To the left is an XUV spectrometer and to the right is a small red laser set up for alignment and positioning. (Credit: Photo courtesy of University of Oxford/Sam Vinko)

Researchers working at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have used the world's most powerful X-ray laser to create and probe a 2-million-degree piece of matter in a controlled way for the first time. This feat, reported inNature, takes scientists a significant step forward in understanding the most extreme matter found in the hearts of stars and giant planets, and could help experiments aimed at recreating the nuclear fusion process that powers the sun.
The experiments were carried out at SLAC's Linac Coherent Light Source (LCLS), whose rapid-fire laser pulses are a billion times brighter than those of any X-ray source before it. Scientists used those pulses to flash-heat a tiny piece of aluminum foil, creating what is known as "hot dense matter," and took the temperature of this solid plasma -- about 2 million degrees Celsius. The whole process took less than a trillionth of a second.
"The LCLS X-ray laser is a truly remarkable machine," said Sam Vinko, a postdoctoral researcher at Oxford University and the paper's lead author. "Making extremely hot, dense matter is important scientifically if we are ultimately to understand the conditions that exist inside stars and at the center of giant planets within our own solar system and beyond."
Scientists have long been able to create plasma from gases and study it with conventional lasers, said co-author Bob Nagler of SLAC, an LCLS instrument scientist. But no tools were available for doing the same at solid densities that cannot be penetrated by conventional laser beams.
"The LCLS, with its ultra-short wavelengths of X-ray laser light, is the first that can penetrate a dense solid and create a uniform patch of plasma -- in this case a cube one-thousandth of a centimeter on a side -- and probe it at the same time," Nagler said.
The resulting measurements, he said, will feed back into theories and computer simulations of how hot, dense matter behaves. This could help scientists analyze and recreate the nuclear fusion process that powers the sun.
"Those 60 hours when we first aimed the LCLS at a solid were the most exciting 60 hours of my entire scientific career," said Justin Wark, leader of the Oxford group. "LCLS is really going to revolutionize the field, in my view."
Story Source:
The above story is reprinted from materials provided byDOE/SLAC National Accelerator Laboratory.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. S. M. Vinko, O. Ciricosta, B. I. Cho, K. Engelhorn, H.-K. Chung, C. R. D. Brown, T. Burian, J. Chalupský, R. W. Falcone, C. Graves, V. Hájková, A. Higginbotham, L. Juha, J. Krzywinski, H. J. Lee, M. Messerschmidt, C. D. Murphy, Y. Ping, A. Scherz, W. Schlotter, S. Toleikis, J. J. Turner, L. Vysin, T. Wang, B. Wu, U. Zastrau, D. Zhu, R. W. Lee, P. A. Heimann, B. Nagler, J. S. Wark. Creation and diagnosis of a solid-density plasma with an X-ray free-electron laserNature, 2012; DOI: 10.1038/nature10746

Thursday, 9 February 2012

Chemists Synthesize Artificial Cell Membrane

Neal Devaraj watches as undergraduate student Weilong Li works on a next step in their quest to create an entirely artificial cell. (Credit: Image courtesy of University of California - San Diego)

Chemists have taken an important step in making artificial life forms from scratch. Using a novel chemical reaction, they have created self-assembling cell membranes, the structural envelopes that contain and support the reactions required for life.


Neal Devaraj, assistant professor of chemistry at the University of California, San Diego, and Itay Budin, a graduate student at Harvard University, report their success in theJournal of the American Chemical Society.
"One of our long term, very ambitious goals is to try to make an artificial cell, a synthetic living unit from the bottom up -- to make a living organism from non-living molecules that have never been through or touched a living organism," Devaraj said. "Presumably this occurred at some point in the past. Otherwise life wouldn't exist."
By assembling an essential component of earthly life with no biological precursors, they hope to illuminate life's origins.
"We don't understand this really fundamental step in our existence, which is how non-living matter went to living matter," Devaraj said. "So this is a really ripe area to try to understand what knowledge we lack about how that transition might have occurred. That could teach us a lot -- even the basic chemical, biological principles that are necessary for life."
Molecules that make up cell membranes have heads that mix easily with water and tails that repel it. In water, they form a double layer with heads out and tails in, a barrier that sequesters the contents of the cell.
Devaraj and Budin created similar molecules with a novel reaction that joins two chains of lipids. Nature uses complex enzymes that are themselves embedded in membranes to accomplish this, making it hard to understand how the very first membranes came to be.
"In our system, we use a sort of primitive catalyst, a very simple metal ion," Devaraj said. "The reaction itself is completely artificial. There's no biological equivalent of this chemical reaction. This is how you could have a de novoformation of membranes."
They created the synthetic membranes from a watery emulsion of an oil and a detergent. Alone it's stable. Add copper ions and sturdy vesicles and tubules begin to bud off the oil droplets. After 24 hours, the oil droplets are gone, "consumed" by the self-assembling membranes.
Although other scientists recently announced the creation of a "synthetic cell," only its genome was artificial. The rest was a hijacked bacterial cell. Fully artificial life will require the union of both an information-carrying genome and a three-dimensional structure to house it.
The real value of this discovery might reside in its simplicity. From commercially available precursors, the scientists needed just one preparatory step to create each starting lipid chain.
"It's trivial and can be done in a day," Devaraj said. "New people who join the lab can make membranes from day one."
The National Institute of Biomedical Imaging and Bioengineering supported this work. UC San Diego has filed a patent application on this discovery.
Story Source:
The above story is reprinted from materials provided byUniversity of California - San Diego. The original article was written by Susan Brown.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. Itay Budin, Neal K. Devaraj. Membrane Assembly Driven by a Biomimetic Coupling ReactionJournal of the American Chemical Society, 2012; 134 (2): 751 DOI:10.1021/ja2076873

Wednesday, 8 February 2012

Scientists Create First Atomic X-Ray Laser

A powerful X-ray laser pulse from SLAC National Accelerator Laboratory's Linac Coherent Light Source comes up from the lower-left corner (shown as green) and hits a neon atom (center). This intense incoming light energizes an electron from an inner orbit (or shell) closest to the neon nucleus (center, brown), knocking it totally out of the atom (upper-left, foreground). In some cases, an outer electron will drop down into the vacated inner orbit (orange starburst near the nucleus) and release a short-wavelength, high-energy (i.e. "hard") X-ray photon of a specific wavelength (energy/color) (shown as yellow light heading out from the atom to the upper right along with the larger, green LCLS light). (Credit: Illustration by Gregory M. Stewart, SLAC National Accelerator Laboratory)



Scientists working at the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory have created the shortest, purest X-ray laser pulses ever achieved, fulfilling a 45-year-old prediction and opening the door to a new range of scientific discovery.

The researchers, reporting in Nature, aimed SLAC's Linac Coherent Light Source (LCLS) at a capsule of neon gas, setting off an avalanche of X-ray emissions to create the world's first "atomic X-ray laser."
"X-rays give us a penetrating view into the world of atoms and molecules," said physicist Nina Rohringer, who led the research. A group leader at the Max Planck Society's Advanced Study Group in Hamburg, Germany, Rohringer collaborated with researchers from SLAC, DOE's Lawrence Livermore National Laboratory and Colorado State University.
"We envision researchers using this new type of laser for all sorts of interesting things, such as teasing out the details of chemical reactions or watching biological molecules at work," she added. "The shorter the pulses, the faster the changes we can capture. And the purer the light, the sharper the details we can see."
The new atomic X-ray laser fulfills a 1967 prediction that X-ray lasers could be made in the same manner as many visible-light lasers -- by inducing electrons to fall from higher to lower energy levels within atoms, releasing a single color of light in the process. But until 2009, when LCLS turned on, no X-ray source was powerful enough to create this type of laser.
To make the atom laser, LCLS's powerful X-ray pulses -- each a billion times brighter than any available before -- knocked electrons out of the inner shells of many of the neon atoms in the capsule. When other electrons fell in to fill the holes, about one in 50 atoms responded by emitting a photon in the X-ray range, which has a very short wavelength. Those X-rays then stimulated neighboring neon atoms to emit more X-rays, creating a domino effect that amplified the laser light 200 million times.
Although LCLS and the neon capsule are both lasers, they create light in different ways and emit light with different attributes. The LCLS passes high-energy electrons through alternating magnetic fields to trigger production of X-rays; its X-ray pulses are brighter and much more powerful. The atomic laser's pulses are only one-eighth as long and their color is much more pure, qualities that will enable it to illuminate and distinguish details of ultrafast reactions that had been impossible to see before.
"This achievement opens the door for a new realm of X-ray capabilities," said John Bozek, LCLS instrument scientist. "Scientists will surely want new facilities to take advantage of this new type of laser."
For example, researchers envision using both LCLS and atomic laser pulses in a synchronized one-two punch: The first laser triggers a change in a sample under study, and the second records with atomic-scale precision any changes that occurred within a few quadrillionths of a second.
In future experiments, Rohringer says she will try to create even shorter-pulsed, higher-energy atomic X-ray lasers using oxygen, nitrogen or sulfur gas.
Additional authors included Richard London, Felicie Albert, James Dunn, Randal Hill and Stefan P. Hau-Riege from Lawrence Livermore National Laboratory (LLNL); Duncan Ryan, Michael Purvis and Jorge J. Rocca from Colorado State University; and Christoph Bostedt from SLAC.
The work was supported by Lawrence Livermore National Laboratory's Laboratory Directed Research and Development Program. Authors Roca, Purvis and Ryan were supported by the DOE Office of Science. LCLS is a national scientific user facility operated by SLAC and supported by DOE's Office of Science.
Story Source:
The above story is reprinted from materials provided by DOE/SLAC National Accelerator Laboratory.
Note: Materials may be edited for content and length. For further information, please contact the source cited above.

Journal Reference:
  1. Nina Rohringer, Duncan Ryan, Richard A. London, Michael Purvis, Felicie Albert, James Dunn, John D. Bozek, Christoph Bostedt, Alexander Graf, Randal Hill, Stefan P. Hau-Riege, Jorge J. Rocca. Atomic inner-shell X-ray laser at 1.46 nanometres pumped by an X-ray free-electron laserNature, 2012; 481 (7382): 488 DOI:10.1038/nature10721